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Fibromyalgia syndrome (FMS) is a recurrent pain condition that can be

challenging to treat. Transcranial direct current stimulation (tDCS) has become

a promising non-invasive therapeutic option in alleviating FMS pain, but

the mechanisms underlying its effectiveness are not yet fully understood.

In this article, we discuss the most current research investigating the

analgesic effects of tDCS on FMS and discuss the potential mechanisms.

TDCS may exert its analgesic effects by influencing neuronal activity in

the brain, altering cortical excitability, changing regional cerebral blood

flow, modulating neurotransmission and neuroinflammation, and inducing

neuroplasticity. Overall, evidence points to tDCS as a potentially safe and

efficient pain relief choice for FMS by multiple underlying mechanisms. This

article provides a thorough overview of our ongoing knowledge regarding the

mechanisms underlying tDCS and emphasizes the possibility of further studies

to improve the clinical utility of tDCS as a pain management tool.
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1 Introduction

Fibromyalgia syndrome (FMS) is a chronic disorder characterized by widespread
musculoskeletal pain and tenderness in at least 11 areas for over 3 months (Galvez-Sánchez
and Reyes Del Paso, 2020). Persistent musculoskeletal pain was linked to worse physical and
cognitive function, burdening individuals and society (Xu et al., 2023; Zheng et al., 2023).
Along with musculoskeletal pain, people with FMS often report fatigue, dyscognition,
stiffness, sleep disturbances, mood issues, and hypervigilance, further reducing quality of
life (Arnold et al., 2019; Gyorfi et al., 2022). FMS affects 2–4% of people worldwide (Häuser
and Fitzcharles, 2018), with 7% of women aged 50–80 affected (White and Robinson, 2015).
Despite improvements in FMS therapy, managing pain remains difficult for healthcare
providers. Brain stimulation has been shown to alleviate FMS in recent clinical trials (Hou
et al., 2016), giving hope for people with FMS.

Transcranial direct current stimulation (tDCS), a typical non-invasive brain
stimulation technique, is being considered as an FMS treatment (Teixeira et al., 2022). It
can change the polarity-dependent excitability of the cerebral cortex by delivering a low
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electrical current to specific brain areas via two electrodes on the
scalp (Vicario et al., 2020). Anodal tDCS usually depolarizes and
excites the neuronal membrane potential, while cathodal tDCS does
the opposite (Sehm et al., 2013; Ho et al., 2016). Compared to other
brain stimulation methods, TDCS is non-invasive, inexpensive, and
safe (Mosayebi Samani et al., 2019).

Current research on tDCS for FMS is promising, and it has
been recommended by the European Chapter of the International
Federation of Clinical Neurophysiology as a possible effective
treatment for FMS (Level B) (Lefaucheur et al., 2017). Despite
multiple clinic studies (Caumo et al., 2022; Ramasawmy et al.,
2022) and systematic reviews (Lloyd et al., 2020; Teixeira et al.,
2022) showing that tDCS reduces FMS pain, a specific research
gap remains. Initial results, like pain alleviation, are the focus of
these investigations. The complicated pathophysiological changes
in FMS pain and the underlying mechanisms by which tDCS
relieves FMS pain are unknown. Thus, a deeper understanding
of the mechanism of tDCS in FMS is required to enhance its
validity and repeatability (van Boekholdt et al., 2021). Moreover,
tDCS treatment parameters in FMS vary greatly across different
studies. Some studies (Matias et al., 2022; Ramasawmy et al.,
2022) recommend stimulating the left primary motor cortex (M1),
while others (Forogh et al., 2021; Caumo et al., 2022) propose
the dorsolateral prefrontal cortex (DLPFC) as more efficacious.
Key treatment parameters like stimulation duration, intensity, and
frequency are also inconsistently described and used. Lack of
consistency makes clinical use of tDCS for FMS difficult. Thus,
our work aims to (1) improve understanding of FMS’s complex
pathophysiological changes and the mechanisms by which tDCS
reduces pain; and (2) evaluate the effects and treatment parameters
of tDCS on FMS.

2 Effect of tDCS on pain for
fibromyalgia

Many studies have aimed to enhance the impact of tDCS
stimulation on pain symptoms in fibromyalgia patients. However,
the complexity and heterogeneity across these studies prompted
us to conduct a scoping review following established guidelines,
including the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA-SR) Statement, to provide a concise
and efficient summary of the existing literature (Peters et al., 2015;
Tricco et al., 2018). Eligibility criteria were developed using the
SPIDER approach (Cooke et al., 2012).

2.1 Specify sample

The review included patients diagnosed with fibromyalgia
by local rheumatology associations or other formal institutions.
Most studies excluded individuals receiving additional medication
to prevent a potential impact on trial results. To ensure study
homogeneity, female subjects were predominantly included, given
the higher prevalence of fibromyalgia in women. Additionally,
certain studies specified a minimum 6-month duration of chronic
pain among participants to investigate its effects on individuals with
prolonged pain experiences.

2.2 Phenomenon of interest

Most studies aimed to explore the impact of tDCS stimulation
on pain, disability, and quality of life in fibromyalgia patients. The
primary brain regions stimulated were M1 and DLPFC, typically
with an intensity of 1–2 mA and a duration of 20 min. Randomized
controlled trials commonly employed sham tDCS as controls, while
only one study compared the effects of repetitive transcranial
magnetic stimulation (rTMS) and tDCS on pain and quality of life
in fibromyalgia patients (Forogh et al., 2021).

2.3 Design of the study

Most of the studies were randomized controlled trials, with
five studies using a double-blind approach (Riberto et al., 2011;
Villamar et al., 2013; Khedr et al., 2017; Caumo et al., 2022;
Ramasawmy et al., 2022), two studies using a cross-over design
(Valle et al., 2009; Villamar et al., 2013), and two studies
exploring the long-term efficacy of tDCS (Cummiford et al., 2016;
Silva et al., 2017).

2.4 Evaluation

This study primarily investigated the impact of tDCS
stimulation on pain relief in fibromyalgia patients, focusing on pain
outcome measures. Visual Analogue Scale (VAS), Numeric Rating
Scale (NRS), and Pain Pressure Threshold (PPT) were chosen as the
primary pain indicators. Most studies observed that applying 2 mA
anodic tDCS to the M1 and DLPFC regions effectively alleviated
pain (Roizenblatt et al., 2007; Valle et al., 2009; Villamar et al., 2013;
Cummiford et al., 2016; Khedr et al., 2017; Silva et al., 2017; Kang
et al., 2020; Forogh et al., 2021; Caumo et al., 2022).

2.5 Research type

The majority of literature in this study adopts quantitative
research methods, primarily comparing the impacts of genuine and
sham tDCS stimulation on pain and other functions in patients.
While some studies reported no significant changes in pain
with sham tDCS, one interesting finding contradicted this trend,
suggesting that sham tDCS could exhibit similar analgesic effects,
possibly linked to the placebo analgesic effect (Caumo et al., 2022).

“Transcranial Direct Current Stimulation” and “Fibromyalgia”
served as MeSH Terms. On November 7, 2022, 75 pertinent
studies were retrieved from the PubMed database, underwent
manual screening, and ultimately, 18 relevant studies were included
(Figure 1). The detailed search strategy is available in the
Supplementary material. Research indicates that 10 sessions of
anodal tDCS in the M1 region can decrease pain levels in
fibromyalgia patients. The development of this condition may
be linked to alterations in serum endorphin levels (Khedr et al.,
2017). Whether applied singly or periodically, tDCS mitigates pain
perception, and stimulating the DLPFC region proves beneficial for
relieving fatigue (To et al., 2017). A single 2 mA, 20-min session of
tDCS stimulation in the M1 and Supra-orbital area (SO) can yield
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FIGURE 1

Flow chart for researches enrolled in this study.

positive clinical effects (To et al., 2017). Moreover, limited research
has addressed enhancing functional connectivity in pain-related
brain regions through tDCS. Future studies should employ multiple
imaging techniques to observe changes in the brain mechanisms of
tDCS analgesia (Caumo et al., 2022). Table 1 provides details on
tDCS stimulus parameters and the results of the included studies.

3 Mechanisms of tDCS for
fibromyalgia syndrome

Despite the unknown pathophysiology of FMS, pain is
connected to central sensitization (Rehm et al., 2021), a
heightened sensitivity of the nervous system that overreacts to
stimuli. This process is essential in FMS, causing widespread
pain and other sensory-related symptoms. Abnormal brain
neural networks and excitability, neuroinflammatory processes,
neurotransmitter imbalances, abnormal cerebral blood flow, and
disrupted neuroplasticity in the pain-processing region may be
involved in this process and contribute to FMS pain (Gyorfi et al.,
2022). Although tDCS has shown promise in reducing FMS pain, its
specific mechanism is unknown, and no biomarkers are available to
predict a patient’s response. The consensus is that tDCS depolarizes
or hyperpolarizes neuronal membrane potential, affecting neural
excitability (Lefaucheur and Wendling, 2019). This knowledge
allows for further study of its mechanics. Multiple systems may
be involved in how tDCS reduces FMS pain. Possible mechanisms
are the promotion of cortical excitability recovery as well as effects
on neuroinflammation, neurotransmission, regional cerebral blood
flow (rCBF), and neuroplasticity. The mechanism of tDCS on FMS
pain is depicted in Figure 2.

3.1 Effects on neural activities of the
brain

With aberrant central nervous system excitability (Thabit
et al., 2021), pain-processing brain regions in FMS sufferers
are more hypersensitive to pressure stimuli than healthy people
(Truini et al., 2015).

An abnormal mix of enhanced and reduced Functional
Connectivity (FC) patterns across the pain matrix was found
in individuals with FMS (Cifre et al., 2012), indicating the
neural networks involved in pain perception and processing are
functioning abnormally.

Anodal tDCS increases while cathodal decreases neural
excitability in targeted areas (Pellicciari et al., 2013). A study
(Auvichayapat et al., 2018) found that anodal tDCS on M1
increased neuronal activity in that area and decreased neuropathic
SCI pain, implying that pain relief occurs by increasing M1
excitability, which is related to pain process (Zortea et al., 2019).
Another study discovered that anodal tDCS targeting DLPFC
increased DLPFC neural excitability, emotion, and pain relief in
participants (Maeoka et al., 2012). Since the DLPFC regulates
emotional pain perception, the change may affect how people
perceive painful sensations. These synchronous changes suggest
tDCS may be helpful to regulate abnormal pain processing and
perception in FMS.

Patients with FMS displayed decreased FC between key pain-
modulating regions (Jensen et al., 2012) and altered FC among
pain process regions and sensorimotor areas (Flodin et al., 2014)
relative to healthy individuals. Pain intensity correlates with FC
sensory integration disturbances (Pujol et al., 2014). Polanía et al.
(2012) found that anodal tDCS on M1 improved the FC between
the left thalamus and ipsilateral M1 in healthy persons. Cummiford
et al. (2016) found that anodal tDCS on the left M1 and cathodal
tDCS on the right supraorbital cortex in FMS sufferers reduced
FC between the left ventral posterolateral thalamus seed and left
inferior parietal lobule, and FC between periaqueductal gray seed
and posterior cingulate, followed by decreased pain. TDCS appears
able to modulate disrupted FC in FMS, which may underlie its
pain-relieving effects in these patients.

Moreover, tDCS can alter oscillatory activity of brain at a
network level (Donaldson et al., 2019). These oscillations integrate
and separate brain areas involved in sensory-painful perception
and processing (Kim and Davis, 2021). Research found enhanced
oscillations in the anterior cingulate and prefrontal cortex of
FMS patients correlated with increased pain, fatigue, and stress
during rest (Fallon et al., 2018). Another study demonstrated that
a high-definition tDCS modulated oscillations and reduced FMS
pain (Castillo-Saavedra et al., 2016). These alterations suggest that
tDCS may reduce pain by modulating abnormal neural oscillations
in FMS.

In all, tDCS may relieve FMS pain by modulating cortical
excitability, FC, and neural oscillations.

3.2 Effects on neuroinflammation

Neuroinflammation refers to inflammatory processes within
the central nervous system that are known to exacerbate pain
sensations in FMS (Mendieta et al., 2016). An imbalance between
pro- and anti-inflammatory cytokines in cerebrospinal fluid
(CSF) is common in FMS. Studies showed increased pro-
inflammatory chemokines/cytokines interleukin 1 (IL-1), IL-6,
IL-8, and TNF-α, and decreased anti-inflammatory cytokines
IL-4 and IL-10 in the CSF of FMS sufferers compared to healthy
individuals (Ross et al., 2010; Mendieta et al., 2016). Moreover,
microglia and mast cells (MCs) are engaged in FMS, activated

Frontiers in Molecular Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnmol.2024.1269636
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/
damirrovis
Highlight

damirrovis
Highlight

damirrovis
Highlight

damirrovis
Highlight

damirrovis
Highlight

damirrovis
Highlight

damirrovis
Highlight

damirrovis
Highlight

damirrovis
Highlight



fnm
ol-17-1269636

January
25,2024

Tim
e:17:4

#
4

W
an

g
e

t
al.

10
.3

3
8

9
/fn

m
o

l.2
0

2
4

.12
6

9
6

3
6

TABLE 1 Characteristics of studies included in the review.

Stimulation details

References Participants(n) Study aim Study design Site Control
group

Current
(mA)

Duration
Frequency
Sessions

Pain
Outcome

Result

Caumo et al.,
2022

Female fibromyalgia
(n = 48)

To explore the effect of
two-frontal home tDCS on pain

disaster and disability in
fibromyalgia

Randomized,
double-blind

sham-controlled trial

L-DLPFC A s-tDCS 2 20 min
Daily 20

PCS; HPTo A-tDCS reduced PCS by
51.38% and increased HPTo

Cummiford
et al., 2016

Female fibromyalgia
(n = 12)

To investigate how a clinically
relevant schedule of tDCS

sessions alters resting state FC
and how these changes might

relate to clinical pain

Crossover design
trial

M1 A s-tDCS 2 20 min
Daily 5

VAS Clinical pain significantly
decreased (p = 0.038)

De Ridder and
Vanneste, 2017

Fibromyalgia
(n = 19);

healthy control
(n = 19)

To unravel the neural
mechanisms involved in global
pain suppression, mediated by

occipital nerve field stimulation,
within the realm of fibromyalgia

Controlled trial OCF C s-tDCS;
healthy
control

1.5 20 min
Daily 7

NRS; PCS A significant effect in NRS
(F = 23.14, p < 0.001) and PCS

(F = 19.17, p < 0.001)

Fagerlund et al.,
2015

Fibromyalgia
(n = 48)

To test the effect of tDCS
stimulation on

pain in patients with fibromyalgia

Randomized
controlled trial

M1 A s-tDCS 2 20 min
Daily 5

NRS No significant differences
between two groups

Forogh et al.,
2021

Fibromyalgia
(n = 30)

To compare the rTMS and tDCS
on pain and quality of life in
patients with fibromyalgia

Randomized
controlled trial

DLPFC A rTMS 2 20 min
Daily 7

VAS 26.6% of patients in tDCS
group experienced at least a
30% reduction of VAS from

baseline to last follow-up
(p = 0.028)

Kang et al., 2020 Fibromyalgia
(n = 46)

To explored the efficacy,
tolerability, and safety of tDCS

treatment in patients with
fibromyalgia

Intervention and
follow-up trial

M1 A/C / 2 20 min
Daily 5

VAS; BPI A significant decrease and
improvement in VAS

(p < 0.001) and BPI (p < 0.01)

Khedr et al.,
2017

Fibromyalgia
(n = 40)

To evaluate the effects of tDCS in
relieving fibromyalgia pain and
its relation with beta-endorphin

changes

Double blinded,
randomized clinical

trial

L-M1 A s-tDCS 2 20 min
Daily 10

WPI; VAS A significant improvement on
the a- tDCS group in WPI and

VAS (P = 0.001)

Matias et al.,
2022

Female fibromyalgia
(n = 31)

To investigate the effects of tDCS
associated with functional

exercise on pain, functional
performance, psychological

symptoms, and quality of life of
patients with fibromyalgia

Randomized
controlled trial

M1 A s-tDCS+ functional
exercises

2 20 min
Daily 5

VAS; PPT No significant differences
between two groups (P > 0.05)
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TABLE 1 (Continued)

Stimulation details

References Participants(n) Study aim Study design Site Control
group

Current
(mA)

Duration
Frequency
Sessions

Pain
Outcome

Result

Mendonca et al.,
2011

Fibromyalgia
(n = 30)

To determine current distribution
and short-term analgesic effects
of tDCS in fibromyalgia using
different electrode montages

Randomized
controlled trial

M1 A/C
SO A/C

s-tDCS 2 20 min
Single 1

VNS; PPT A significant improvement on
the SO in pain

Mendonca et al.,
2016

Fibromyalgia
(n = 45)

To assess whether the combined
intervention of tDCS and aerobic

exercise would induce
significantly greater pain

reduction as compared to tDCS
alone and aerobic exercise alone

Randomized
placebo-controlled

clinical trial

L-M1 A
R- SO C

tDCS;
AE

2 20 min
Daily 10

VNS; PPT A significant improvement in
VNS and PPT (p < 0.001)

Ramasawmy
et al., 2022

Fibromyalgia
(n = 30)

To investigate the preliminary
clinical efficacy and feasibility of

combining MM and Tdcs for pain
and associated symptoms in
patients with fibromyalgia

syndrome

Randomized,
double-blind

sham-controlled trial

L-M1 A s-tDCS+MM 2 20 min
Daily 10

NRS; PPT No significant differences
between two groups

Riberto et al.,
2011

Female fibromyalgia
(n = 23)

To test whether active tDCS, as
compared with sham tDCS,

combined with multidisciplinary
rehabilitation is associated with

significant clinical gains in
fibromyalgia

Randomized,
double-blinded
controlled trial

M1 A
SO C

s-tDCS 2 20 min
Daily 10

VAS; PPT No significant differences
between two groups

Roizenblatt
et al., 2007

Fibromyalgia
(n = 32)

To investigate whether active
tDCS of DLPFC and M1 as

compared to sham treatment is
associated with changes in sleep

structure in fibromyalgia

Randomized,
sham-controlled trial

M1/DLPFC
A

s-tDCS 2 20 min
Daily 5

VAS 59.14% decrease in M1 site in
VAS

Silva et al., 2017 Female fibromyalgia
(n = 40)

To test the effects of a single
session of tDCS coupled with a
Go/No-go task in modulating

three distinct attentional
networks

Randomized
controlled trial

DLPFC A s-tDCS 1 20 min
Single 1

HPT; HPTo A- tDCS significantly increased
the HPT (P < 0.001) and HPTo

To et al., 2017 Fibromyalgia
(n = 42)

To explore the effectiveness of
repeated sessions of tDCS (eight
sessions) targeting the C2 area

and DLPFC in reducing
fibromyalgia symptoms, more

specifically pain and fatigue

Randomized
controlled trial

DLPFC/C2
A/C

s-tDCS 1.5 20 min
Daily 8

NRS; PCS C2 and DLPFC tDCS
significantly improved pain

(P < 0.001)
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to secrete more pro-inflammatory Cytokines (Theoharides et al.,
2019). Pro-inflammatory cytokine dysregulation aggravates
low-grade inflammation in CNS, activates or even sensitizes
nociceptors, causes pain sensitization, and triggers hyperalgesia
(Siracusa et al., 2021).

Transcranial direct current stimulation may reduce FMS
pain by modulating neuroinflammation, possibly achieved by
stimulating brain immune cells, such as MCs and glial cells,
to regulate pro-inflammatory cytokines release. Research showed
tDCS can reduce the activation of microglia (Walter et al., 2022),
a type of essential glial cell in the neuroinflammatory process, thus
decreasing the synthesis of TNF and other inflammatory mediators
(Guo et al., 2020).

Animal models show that tDCS can change neuroinflammatory
mediators. IL-1β (Lopes et al., 2020; Regner et al., 2020) and IL-6
(Guo et al., 2020) were reduced in the CNS structure of animals
following tDCS stimulation, while IL-1α (Santos et al., 2020), IL-10
(Santos et al., 2020), and IL-4 (Lopes et al., 2019) were increased.
Moreover, animals in these experiments showed analgesic response
after tDCS stimulation, which provided a window into the pain
relief caused by neuroinflammatory modulation. Human studies
also confirmed the analgesic effect of tDCS caused by the regulation
of neuroinflammation. A sham-controlled study found plasma
IL-8 reduced significantly among bipolar disorder sufferers after
using tDCS (Goerigk et al., 2021). In other studies, depressed
individuals had a non-significant decrease in plasma IL-6 and TNF-
α compared to the sham group after tDCS activation (Brunoni
et al., 2014, 2018). These findings suggest tDCS may relieve
FMS pain by modulating neuroinflammation through balancing
pro- and anti-inflammatory cytokines. Further tDCS studies in
FMS patients with a focus on cytokines are needed to confirm
the consistency of the changed cytokine and analgesic response,
verifying its ability to influence neuroinflammation for pain
relief.

3.3 Effects on neurotransmission

Pain in FMS may be associated with an impairment
of excitatory and inhibitory neurotransmission (Harris, 2010).
Abnormal levels of neurotransmitters were found in the CSF
and brain of FMS patients, such as glutamate and substance
P, serotonin (5-HT), noradrenaline, dopamine, and gamma-
aminobutyric acid (GABA) (Clauw et al., 2011). Changed
neurotransmitter levels increased pro-nociceptive transmission
and reduced anti-nociceptive transmission. Changed endogenous
cerebral opioid activation is another anomaly in FMS (Schrepf et al.,
2016).

Transcranial direct current stimulation shows promise for
reducing FMS pain by regulating neurotransmitters implicated
in its complex pathophysiology. Increased levels of glutamate
(excitatory) and reduced levels of GABA (inhibitory) contribute
to FMS hyperalgesia (Harris, 2010; Pomares et al., 2020). Studies
(Zhao et al., 2020; Lengu et al., 2021) show that tDCS can modulate
cortical levels of GABA and glutamate, impacting neuronal
signaling. Bifrontal tDCS (anode over left DLPFC and cathode over
right DLPFC with a current of 2 mA) increased dopamine in the
ventral striatum in healthy participants (Fonteneau et al., 2018).
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FIGURE 2

Potential Mechanisms of tDCS for pain in Fibromyalgia Syndrome (FMS). The mechanisms include regulation of neural activity; modulation of
neuroinflammation; regulation of neurotransmission; regulation of regional cerebral blood flow; modulation of neuroplasticity. FC, function
connectivity; TNF, tumor necrosis factor; IL, interleukin; GABA, gamma-aminobutyric acid; LTP, long-term potentiation; BDNF, brain-derived
neurotrophic factor; NMDA receptors, N-methyl-D-aspartate receptors.

Research found that tDCS with an anode on the left and a cathode
on the right DLPFC in healthy subjects enhanced left striatal
GABA, correlated with increased right striatal dopamine, and
decreased GABA in the left DLPFC (Bunai et al., 2021). Additional
research shows tDCS can also affect serotonin (Brunoni et al.,
2013) and noradrenaline (Mishima et al., 2019) release. Changes
in transmitters induced by tDCS may activate pain inhibitory
pathways to cause pain relief in FMS.

Deficiencies in an endogenous pain management system may
induce widespread pain in FMS (Schrepf et al., 2016). The intrinsic
pain-regulating system modulates spinal cord pain signals via the
descending brainstem-to-spinal cord pathway. This system appears
to be strengthened by TDCS to reduce pain signaling and thus
relieve pain (DosSantos et al., 2018). Research also linked pain
relief to increased beta-endorphin levels (Chaudhry and Gossman,
2021). A review found that tDCS enhances dysfunctional neuronal
circuitries involved in the pain-descending inhibitory system
associated with opioids, thereby reducing chronic non-cancer-
related pain (Zortea et al., 2019). DosSantos et al. (2012) discovered
that tDCS over M1 boosted the endogenous-opioid release and
the experimental cold pain threshold in a subject with trigeminal
neuropathic pain. Another clinical trial (Khedr et al., 2017)
indicated that left M1 tDCS reduced pain, improved mood, and

boosted β-endorphin levels in FMS sufferers. To summarize, tDCS
affects glutamate, serotonin, noradrenaline, dopamine, GABA, and
endogenous brain opioids. These modulations may explain tDCS’
analgesic impact.

3.4 Effects on regional cerebral blood
flow

People with FMS suffer abnormal rCBF and metabolism
in pain-related regions, which may contribute to pain severity.
Patients with FMS have lower CBF than controls in different
brain regions, including the thalamus, caudate nucleus, pontine
tegmentum, and basal ganglia (Kwiatek et al., 2000; Schmidt-
Wilcke et al., 2007; Shokouhi et al., 2016). Given that these areas
play a crucial role in processing and regulating pain, the reduction
in CBF may be a major consideration in the heightened sensitivity
to pain and chronic discomfort suffered by patients with FMS.
Alterations in metabolism were also found in different regions
of the brain in individuals with FMS (Guedj et al., 2008), which
were related to how well the disorder would progress (Usui et al.,
2017).
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A study (Zheng et al., 2011) showed that anodal tDCS
significantly raised rCBF (17.1%) during stimulation, which
returned to baseline afterward, while cathodal tDCS caused
a smaller rCBF increase in participants. La Rocca et al.
(2022) found TDCS stimulation on M1 restored basic cortical
hypometabolism in patients with FMS. Jales Junior et al.
(2015) found that tDCS significantly increased rCBF in basal
ganglia, and this alteration correlates with reduced pain in
patients with FMS. These regions are critical to pain processing.
Negative rCBF and cortical hypometabolism can affect neuronal
function and pain processing. These studies collectively suggest
that tDCS modulates rCBF and hypometabolism, which may
normalize the dysfunctional neural circuits involved in pain
perception, thereby reducing the pain experienced by FMS
patients.

3.5 Effects on neuroplasticity

Transcranial direct current stimulation may reduce FMS pain
by altering the brain’s pain response by inducing plasticity.
Neuroplastic changes, including long-term potentiation
(LTP) and long-term depression (LTD) (Kourosh-Arami
et al., 2021), refer to the ability of the brain to reshape
itself by generating new neural connections. Because of this
adaptability, FMS causes an overactive brain pain processing
system and generalized widespread pain (Gerra et al., 2021;
Jayakar et al., 2021; Mezhov et al., 2021). Neuroplastic
changes are associated with brain-derived neurotrophic
factor (BDNF), which affects neuronal growth and synaptic
connectivity. Research indicates that the BDNF levels in
participants with FMS were lower than those in healthy controls
(Iannuccelli et al., 2022).

Evidence shows that tDCS can cause cerebral excitability
alterations that can persist longer than the stimulation period
(Farnad et al., 2021; Santos et al., 2021), offering compelling
insights into its potential impact on neuroplasticity. Further
substantiating this view are animal experiments, which have
demonstrated that tDCS enhanced LTP, reduced LTD, and
increased BDNF concentration in some areas in the brain
of rats (Kronberg et al., 2017; Yu et al., 2019). Another
investigation suggested that tDCS can decrease BDNF levels and
decrease pain in people with knee pain, and it supported an
association between change in BDNF and change in clinical pain
(Suchting et al., 2021).

Transcranial direct current stimulation can induce
neuroplasticity in a manner dependent on N-methyl-D-aspartate
receptors (NMDARs) (Liebetanz et al., 2002; Nitsche et al., 2003),
which can regulate signaling pathways by allowing positively
charged ions, such as calcium, to enter the cell and strengthen the
synapse. Research also discovered that tDCS increased the amount
of NMDA receptors and subsequently enhanced pain-related
responses in animals (Li et al., 2022a,b). This suggests tDCS
enhances NMDAR-mediated synaptic plasticity by increasing
neuronal membrane NMDAR density, heightening synaptic
responsiveness crucial to modulating pain.

Accordingly, tDCS can trigger long-term neuroplastic changes
in the brain. These changes are crucial in FMS, as they can lead
to a reorganization of the pain processing pathways in the brain.

Alterations in plasticity-related pathways may be accomplished by
inducing LTP and upregulating BDNF or NMDARs.

4 Conclusion

Overall, we found that tDCS may reduce FMS pain by
altering neuronal activity, regulating neuroinflammation
and neurotransmission, accelerating rCBF, and inducing
neuroplasticity. Deeper exploration, such as molecular studies,
is needed to fill the ongoing gaps between the complex
pathophysiological factors underlying FMS pain and the specific
molecular changes by which tDCS reduces FMS pain., thus
optimizing the efficacy of tDCS in FMS pain management. M1
and DLPFC areas in FMS sufferers are typically stimulated with
1–2 mA of tDCS for 20 min. Research on tDCS in FMS often
delivers inconsistent outcomes because of different treatment
protocols. This variability challenges synthesizing evidence and
limits research results to broader patient populations, which
underscores the need for standardized protocols to increase the
comparability and generalizability of tDCS results in FMS.

While our research highlights the potential of tDCS in FMS
pain relief, we need to admit that our limitations for possible biased
sampling cannot be ruled out without a robust systematic literature
assessment. Further research utilizing rigorous quality evaluation
approaches is needed to enhance confidence in synthesizing
findings. Also, this work primarily addressed immediate outcomes
like pain reduction rather than long-term efficacy and impact
on other symptoms. Pain location and perception vary among
FMS sufferers, and they may have multi-faceted impairments
beyond pain alone. It is therefore imperative that future research
employs longitudinal study designs to evaluate the sustained effects
of tDCS on pain symptoms and the broader spectrum of FMS
manifestations. Future studies should also focus on identifying
biomarkers to predict individual responses to tDCS, enhancing the
treatment’s efficacy and personalization.
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